Biodegradable Crab Leg Mechanism

Research Question

[1] H. Kim, Y. Liu, K. Jeong, M. Sitti and T. Seo, “Dynamic analysis on hexapedal water-running robot with compliant joints,” 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 250-251, doi: 10.1109/URAI.2017.7992797.

[2] D. Aukes, B. Goldberg, M. Cutkosky, and R. Wood, “An analytic framework for developing inherently-manufacturable pop-up laminate devices,” 2014 Smart Mater. Struct. 23 pp. 094013, doi: 10.1088/0964-1726/23/9/094013.

[3] W. C. Flannigan, G. M. Nelson and R. D. Quinn, “Locomotion controller for a crab-like robot,” Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 1998, pp. 152-156 vol.1, doi: 10.1109/ROBOT.1998.676345.

[4] M. Vespignani, K. Melo, M. Mutlu and A. J. Ijspeert, “Compliant snake robot locomotion on horizontal pipes,” 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2015, pp. 1-8, doi: 10.1109/SSRR.2015.7442941.

[5] A. Gollakota and M. B. Srinivas, “Agribot — A multipurpose agricultural robot,” 2011 Annual IEEE India Conference, Hyderabad, 2011, pp. 1-4, doi: 10.1109/INDCON.2011.6139624.

[6] E. Fortes, “Seed Plant Drone for Reforestation”, Bridgewater State University, 2017, Accessed: 29- Jan- 2021, [Online]. Available: https://vc.bridgew.edu/cgi/viewcontent.cgi?referer=https://scholar.google.com/&httpsredir=1&article=1033&context=grad_rev.

[7] P. Kumar and G. Ashok, “Design and fabrication of smart seed sowing robot”, Materials Today: Proceedings, 2020, Accessed: 31-Jan-2021, [Online]. Available: https://doi.org/10.1016/j.matpr.2020.07.432

[8] S. Prajapati, S. Rai, M. Mali, M. Kumar, and A. Kumar, “AUTOMATIC TREE PLANTING ROBOT,” vol. 8, no. 3, p. 6, 2020.

[9] S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung and D. Rus, “An untethered miniature origami robot that self-folds, walks, swims, and degrades,” 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 1490-1496, doi: 10.1109/ICRA.2015.7139386.


Biomechanics

[1] S. B. Whittemore, B. Hoglin, M. A. Green, and S. Medler. “Stride Frequency in Relation to Allometric Growth in Ghost Crabs: Stride Frequency in Ghost Crabs.” Journal of Zoology (1987), vol. 296, no. 4, Aug. 2015, pp. 286–94, doi:10.1111/jzo.12244.

[2] R. Blickhan and R. J. Full, “Locomotion Energetics of the Ghost Crab: II. Mechanics of the Centre of Mass During Walking and Running,” Journal of Experimental Biology, vol. 130, no. 1, pp. 155–174, Jul. 1987. Retrieved from https://jeb.biologists.org/content/jexbio/130/1/155.full.pdf

[3] Springthorpe, D. (2016). Biomechanical Multifunctionality in the Ghost Crab, Ocypode quadrata. UC Berkeley. ProQuest ID: Springthorpe_berkeley_0028E_16586. Merritt ID: ark:/13030/m54z06hg. Retrieved from https://escholarship.org/uc/item/1kh6b90z

[4] R. J. Full, R. B. Weinstein, Integrating the Physiology, Mechanics and Behavior of Rapid Running Ghost Crabs: Slow and Steady Doesn’t Always Win the Race, American Zoologist, Volume 32, Issue 3, June 1992, Pages 382–395, https://doi.org/10.1093/icb/32.3.382

[5] M. J. Perry, J. Tait, J. Hu, S. C. White, and S. Medler, “Skeletal muscle fiber types in the ghost crab, Ocypode quadrata: implications for running performance,” Journal of Experimental Biology, vol. 212, no. 5, pp. 673–683, Mar. 2009, doi: 10.1242/jeb.023481.

[6] B. L. Luk, S. Galt, and S. Chen “Using Genetic Algorithms to Establish Efficient Walking Gaits for an Eight-Legged Robot.” International Journal of Systems Science, vol. 32, no. 6, Taylor & Francis Group, Jan. 2001, pp. 703–13, doi:10.1080/00207720117230.

[7] J. C. Spagna, D. I. Goldman, P.-C. Lin, D. E. Koditschek, and R. J. Full, “Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain,” Bioinspiration & Biomimetics, vol. 2, no. 1, Jan. 2001, pp. 9-18, doi:10.1088/1748-3182/2/1/002

[8] K. Karydis, I. Poulakakis and H. G. Tanner, “A switching kinematic model for an octapedal robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 507-512, doi:10.1109/IROS.2012.6386230.

[9] K. Karydis, Y. Liu, I. Poulakakis, and H. G. Tanner, “A Template for Miniature Legged Robots in Quasi-Static Motion,” pp. 15.

[10] F. Qian, T. Zhang, W. Korff, P.B. Umbanhowar, R.J Full, and D.I. Goldman. “Principles of appendage design in robots and animals determining terradynamic performance on flowable ground.” Bioinspiration & biomimetics, 10(5), 2015., p.056014.

[11] D. R. Merritt, and F. Weinhaus. “The pressure curve for a rubber balloon,” American Journal of Physics 46, 976. 1978 DOI: 10.1119/1.11486

[12] Y. Ng, S. Mak, and C. Chung. “Demonstration of Newton’s third law using a balloon helicopter,” The Physics Teacher 40, 181 (2002); https://doi.org/10.1119/1.1466555.


Dynamics

[1] D. M. Aukes, “Solidworks FEA Tutorial: Foldable Robotics,” [Online]. Available: https://egr557.github.io/modules/compliance/solidworks-fea-tutorial.html.. [Accessed 4 March 2021].

[2] S. Allaoui, Z. Aboura and M. Benzeggagh, “CONTRIBUTION TO THE MODELLING OF THE CORRUGATED,” [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1110/1110.5417.pdf. [Accessed 4 March 2021].

[3] T. Fadiji, T. Berry, C. Coetzee and U. L. Opara, “Investigating the Mechanical Properties of Paperboard Packaging Material for Handling Fresh Produce Under Different Environmental Conditions: Experimental Analysis and Finite Element Modelling,” Journal of Applied Packaging Research.

[4] aqua-calc, “Density of Cardboard (material),” [Online]. Available: https://www.aqua-calc.com/page/density-table/substance/cardboard#:~:text=Density%20 of%20Cardboard%20(material)&text=Cardboard%20weighs%200.689%20gram%20per,i nch%20%5Boz%2Finch%C2%B3%5D%20.. [Accessed 4 March 2021].